

Цели экзамена

Сертифицированный специалист Unity шейдинг и эффекты

© 2017 Unity Technologies 1 | unity3d.com

Значение

Специалисты по шейдингу и эффектам работают с визуальным настроением игры. Художники в этой области часто работают с другими техническими художниками в процессе подготовки или улучшения ассетов. Специалисты по шейдингу и эффектам ответственны за визуальный стиль, тематику и эстетику игры.

Художники, обладающие этими навыками, внедряют освещение в реальном времени, создают и настраивают шейдеры и системы рендеринга, а также создают системы частиц и эффекты, которые взаимодействуют с другими ассетами.

Подходящие должности:

- программист шейдеров;
- специалист по освещению;
- художник по эффектам.

© 2017 Unity Technologies 2 | unity3d.com

Требования

Сертификация рекомендуется тем, у кого за плечами уже есть несколько лет работы в этой области и разносторонний практический опыт, например:

- опыт работы в студии разработки компьютерных игр. Как минимум две выпущенные игры;
- уверенное знание рабочих процессов и техник физического освещения;
- отличное понимание разработки материалов для процесса физического рендеринга;
- отличное понимание принципов цветокоррекции и постэффектов;
- знание фотографических принципов;
- опыт написания шейдеров на HLSL, CgFX или других языках;
- опыт написания кода на языках C++, C# или Unityscript;
- знание систем частиц, динамических симуляций и форматов обмена (например, Alembic);
- свободное владение инструментами создания ассетов: Adobe
 Creative Suite, Substance Designer, Substance Painter, Quixel Suite и т. д.;
- уверенное знание математических принципов 2D и 3D.

© 2017 Unity Technologies 3 | unity3d.com

Ключевые навыки

Сертификация «Специалист Unity — шейдинг и эффекты» подтверждает, что кандидаты обладают достаточными навыками для эффективной реализации вида, стиля, тематики и эстетики проекта. Успешно прошедшие сертификацию кандидаты обладают навыками в нижеследующих областях.

Прототипирование

• Создание и оценка прототипов шейдеров и материалов.

Шейдеры и материалы

- Создание и тестирование тестовых шейдеров для:
 - симуляции явлений;
 - динамических изменений в ответ на игровые события;
 - расширения функционала стандартных шейдеров для поддержки рабочего процесса;
 - внедрения специальных моделей освещения и нефотореалистичного рендеринга (NPR).
- Дизайн, построение и внедрение процедурных материалов и эффектов материалов, которые адаптируются под условия сцены.
- Внедрение специального UI материалов с использованием ShaderGUI.
- Создание специальных инспекторов с использованием OnInspectorGUI().
- Внедрение постэффектов (т. е. глубины резкости, цветокоррекции, глянца, отражений экрана, размытия и тумана) в соответствии с GDD.
- Скриптинг рендеринга текстур для работы отражений в реальном времени.

Рендеринг и освещение

- Понимание разных видов света и их влияния на производительность.
- Понимание разных видов теней и их влияния на производительность.
- Понимание различий между прямым и отложенным рендерингом.
- Определение требований и ограничений API для рендеринга в зависимости от платформы.
- Изменение и улучшение процесса рендеринга с помощью Unity API, буферов команд и библиотеки графики.

© 2017 Unity Technologies 4 | unity3d.com

Системы частиц

- Симуляция атмосферных явлений с помощью нескольких систем частиц.
- Внедрение типовых игровых эффектов: огня, взрывов, дыма и воды.
- Создание сложных систем частиц, включая системы с компонентами Sub-Emitter, Line и Trail Renderer.
- Скриптинг событий системы частиц, которые должны реагировать на поведение игрока, NPC и другие события.
- Импорт и рендер данных внешних симуляций.
- Динамическая оценка данных Collider и Transform для настройки взаимодействия с системами частиц.

Производительность и оптимизация

- Понимание спецификации и ограничений целевой платформы.
- Оптимизация шейдеров, систем частиц, постэффектов, освещения, тумана, теней и пр. для запуска на целевой платформе.
- Понимание техник оптимизации (billboarding, проблемы альфасортировки, вызовы рендеринга, проблемы уровня заполнения, сценарии, завязанные на CPU/GPU) и решение проблем по мере надобности.
- Анализ и оценка проблем рендеринга с помощью Frame Debugger и платформенных инструментов захвата кадров.

© 2017 Unity Technologies 5 | unity3d.com

Сертификация Темы экзамена

Инструменты и рабочий процесс

- Настройка ассетов.
- Улучшение процесса за счет индивидуализации специальных инструментов и редактора.

Рендеринг

- Процесс рендеринга.
- Эффекты постпроцессинга.
- · Камеры в Unity.

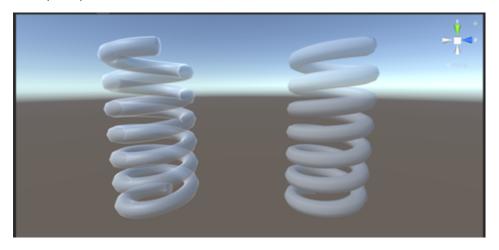
Шейдеры

- Построение, прототипирование и персонализация шейдеров.
- Знание шейдеров установки рендера.
- Скриптинг в области шейдеров.

Частицы и эффекты

- Персонализация и расширение систем частиц.
- Техники создания эффектов.

Производительность


Оптимизация сцены.

© 2017 Unity Technologies 6 | unity3d.com

Примеры вопросов

Вопрос 1

См. пример:

Шейдер Standard Shader, режим Rendering Mode установлен в значение Transparent, применен к единственной трехмерной сетке. Некоторые из плоскостей сетки перекрываются, их нормали одинаково направлены. Модель слева отрисовывается неправильно. Для соответствия концептарту нужен эффект, воспроизведенный на рисунке справа.

Что должен сделать технический художник, чтобы добиться нужного эффекта?

- A Hастроить Culling Mode.
- **В** Использовать собственный порядок рендеринга (Render Queue).
- С Написать собственный шейдер с отрисовкой в несколько проходов.
- D Написать собственный шейдер с использованием GrabPass.

© 2017 Unity Technologies 7 | unity3d.com

В дизайн-документе (GDD) стратегии для мобильных устройств, рассчитанной на платформы с поддержкой OpenGL ES версии 3.0 и выше, описана плоская карта с золотыми шахтами, процедурно размещаемыми во время выполнения игры. Некоторые шахты находятся над землей, другие под землей.

Какой из перечисленных способов наиболее эффективно позволяет показать вход в шахту?

- **А** Процедурная генерация меша карты во время выполнения игры.
- В Использование Compute Shader для карты.
- **С** Использование Parallax Shader для карты.
- D Использование шейдера с трафаретной маской (stencil mask).

© 2017 Unity Technologies 8 | unity3d.com

Действие приключенческой игры от первого лица проходит в ограниченном пространстве с динамическим освещением, расположенном на горных лугах. Перед техническим художником стоит задача добавить систему процедурных облаков, рисуемых поверх цвета процедурного неба, а также статичные горы на горизонте, добраться до которых нельзя. Горы также должны динамически освещаться и окутываться туманом в сцене.

Что должен сделать художник, чтобы избежать взаимодействия облаков и тумана?

- A Добавить горы с помощью CameraEvent.BeforeSkybox.
- В Реализовать уровни детализации (LOD) гор в сцене.
- **С** Добавить горы с помощью CameraEvent.AfterEverything.
- **D** Добавить горы как компоненты UI Image в пространстве World Space, каждый на своем Canvas.

© 2017 Unity Technologies 9 | unity3d.com

Перед техническим художником стоит задача создать имитацию дождя на земном шаре. Данные об осадках берутся с серверов погодных служб в реальном времени. Данные о погоде отображаются в виде цветных изображений дождя, накладываемых на диффузную текстуру земного шара. Реализована функция, позволяющая узнать об интенсивности осадков в нужной точке планеты. В дизайн-документе игры указано, что имитация должна иметь вид капель дождя, аналогичных тем, что можно наблюдать в новостях о погоде по телевидению.

Каков наиболее эффективный способ передать излучателю частиц информацию о распределении и интенсивности осадков в процессе выполнения программы?

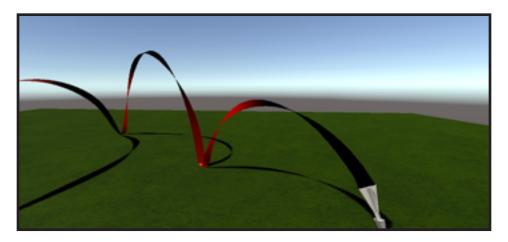
Α

- 1. Использовать модуль Shape, который будет излучать частицы сверху вниз с масштабированной версии меша земли.
- 2. Применить текстуру дождя к материалу частиц, чтобы частицы в зоне без осадков были невидимыми или отбрасывались при рендеринге.

В

- 1. Обновлять по скрипту, используя точки, случайно выбираемые из видимой области земного шара для получения данных об осадках.
- 2. Затем применять эти данные для изменения внешнего вида частиц в функции испускания частиц.

C


- 1. Использовать модуль Shape, который будет излучать частицы от сферы.
- 2. Применить текстуру дождя к материалу частиц, чтобы частицы в зоне без осадков были невидимыми или отбрасывались при рендеринге.

D

- 1. Обновлять по скрипту, получая список активных частиц из сферического излучателя.
- 2. Использовать их положение для получения данных об осадках, удалять частицы в зонах без осадков и обновлять интенсивность испускания частиц для зон с осадками.

© 2017 Unity Technologies 10 | unity3d.com

См. пример:

В игровом проекте присутствует оружие, которым управляет игрок. Оно стреляет прыгучим снарядом, который вращается вокруг своей оси и оставляет за собой вьющуюся ленту, обозначающую его траекторию. В показанном примере лента корректно реагирует на освещение сцены.

Каков наиболее эффективный способ реализовать подобный эффект?

- A Добавить Trail Renderer к GameObject, вложенному в объект снаряда.
- **В** Добавить Line Renderer, управляемый скриптом, к GameObject, вложенному в объект снаряда.
- **C** Создать скрипт с использованием класса Mesh для применения эффекта к снаряду.
- D Создать скрипт, который будет управлять моделью ленты с ригом с помощью SkinnedMeshRenderer.

Правильные ответы: C, D, A, B, C.

© 2017 Unity Technologies 11 | unity3d.com